Quantcast
Channel: oracle – Oracle SQL
Viewing all 101 articles
Browse latest View live

Oracle 12c: behavior tests of the Inline functions, “Identities” and “defaults”

$
0
0

I have done several minitests:
1. SQL and PL/SQL engines: which functions will be executed if there are two functions with same name as in SQL, as in PL/SQL (like “USER”, LPAD/RPAD, etc..)
- PL/SQL.

Spoiler:: PL/SQL SelectShow>

2. Will there be any context switches if we call the inline functions which contain another pl/sql functions/procedures?
- Yes

Spoiler:: Test 1 SelectShow>

Spoiler:: Test 2 SelectShow>

Spoiler:: Test 3 SelectShow>

3. How IDENTITY works?
For all identity columns Oracle creates a sequence with name like “ISEQ$$_XXX”, where “XXX” is the object_id of the table. All identities we can get through DBA_TAB_IDENTITY_COLS.
All Identity sequences:

select i.*
      ,tab.owner       tab_owner
      ,tab.object_name tab_name
      ,sq.object_name  sequence_name
from sys.idnseq$ i
    ,dba_objects tab
    ,dba_objects sq
where tab.object_id=i.obj#
  and sq.object_id = i.seqobj#

And we can see usage of this sequence in plans:

Spoiler: SelectShow>

4. When executes “default seq.nextval”?
Spoiler:: Test SelectShow>

Just link to my old package for os commands execution

Undocumented results invalidations of function with result_cache

$
0
0

I’m sorry, that example was wrong! Thanks to Jefrey Kemp!
But previous is still relevant.

Patch for “Bug 16516751 : Suboptimal execution plan for query with join and in-list using composite index” is available now

$
0
0

Bug about which i wrote previously is fixed now in 12.2, and patch 16516751 is available now for 11.2.0.3 Solaris64.
Changes:
1. CBO can consider filters in such cases now
2. Hint NUM_INDEX_KEYS fixed and works fine

UPD: Very interesting solution by Igor Usoltsev(in russian):
Ignored hint USE_CONCAT(OR_PREDICATES(N)) allows to avoid inlist iterator.
Example:

select--+ USE_CONCAT(OR_PREDICATES(32767))
 * from xt1,xt2
where
     xt1.b=10
 and xt1.a=xt2.a
 and xt2.b in (1,2)
/

Plan hash value: 2884586137          -- good plan:
 
----------------------------------------------------------------------------------------
| Id  | Operation                     | Name   | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT              |        |       |       |   401 (100)|          |
|   1 |  NESTED LOOPS                 |        |       |       |            |          |
|   2 |   NESTED LOOPS                |        |   100 | 36900 |   401   (0)| 00:00:01 |
|   3 |    TABLE ACCESS BY INDEX ROWID| XT1    |   100 | 31000 |   101   (0)| 00:00:01 |
|*  4 |     INDEX RANGE SCAN          | IX_XT1 |   100 |       |     1   (0)| 00:00:01 |
|*  5 |    INDEX RANGE SCAN           | IX_XT2 |     1 |       |     2   (0)| 00:00:01 |
|   6 |   TABLE ACCESS BY INDEX ROWID | XT2    |     1 |    59 |     3   (0)| 00:00:01 |
----------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   4 - access("XT1"."B"=10)
   5 - access("XT1"."A"="XT2"."A")
       filter(("XT2"."B"=1 OR "XT2"."B"=2)) 

From 10053 trace on nonpatched 11.2.0.3:
inlist_concat_diff_10053

Just another SQL beautifier

$
0
0

Previously i wrote beautifier in perl, but it was not so good, so i decided to write it in java using popular BlancoSQLFormatter library.
So you can download it now: http://orasql.org/scripts/SQLBeautifier.jar
Usage:

java -jar SQLBeautifier.jar your_file.sql

or

echo select * from dual | java -jar SQLBeautifier.jar

You certainly can conveniently use it within sql*plus with script like that:

set timing off head off termout off
col qtext format a150
prompt ################################  Original query text:  ################################################;
#spool &_SPOOLS/to_format.sql
spool to_format.sql
select
    coalesce(
        (select sql_fulltext from v$sqlarea a where a.sql_id='&1')
    ,   (select sql_text from dba_hist_sqltext a where a.sql_id='&1' and dbid=(select dbid from v$database))
    ) qtext
from dual
;
spool off

prompt ################################  Formatted query text #################################################;
#host perl inc/sql_format_standalone.pl &_SPOOLS/to_format.sql
host java -jar SQLBeautifier.jar to_format.sql
prompt ################################  Formatted query text End #############################################;
set termout on head on

Example:
beautifier2

Links:

Little example of index creation on extended varchars

$
0
0
-- it's just for fun:
SQL> alter system set "_scalar_type_lob_storage_threshold"=32000;

System altered.
SQL> create table t_varchar32000(v varchar2(32000 byte));

Table created.

SQL> insert into t_varchar32000
  2  select rpad(rownum,31999) || `x' str from dual connect by level<=1000;

1000 rows created.

SQL> commit;

Commit complete.

SQL> create index ix_t_varchar32000 on t_varchar32000(v) tablespace users;
create index ix_t_varchar32000 on t_varchar32000(v) tablespace users
                                  *
ERROR at line 1:
ORA-01450: maximum key length (6398) exceeded


SQL> create index ix_t_varchar32000 on t_varchar32000(v) tablespace ts_32k;
create index ix_t_varchar32000 on t_varchar32000(v) tablespace ts_32k
                                  *
ERROR at line 1:
ORA-01450: maximum key length (26510) exceeded

-- tablespace for big varchars:
SQL> alter system set DB_32K_CACHE_SIZE=100M;

System altered.

SQL> CREATE TABLESPACE TS_32K DATAFILE '/u01/app/oracle/oradata/xtsql/pdb1/ts_32k_1.dbf' SIZE 150M
  2   EXTENT MANAGEMENT LOCAL UNIFORM SIZE 1M
  3   BLOCKSIZE 32K;

Tablespace created.

SQL> create table t_varchar16000(v varchar2(16000 byte)) tablespace ts_32k;

Table created.

SQL> insert into t_varchar16000
  2  select rpad(rownum,15999,'x' ) || 'y' from dual connect by level<=1000;

1000 rows created.

SQL> create index ix_t_varchar16000 on t_varchar16000(v) tablespace ts_32k;

Index created.


Spoiler:: Statistics SelectShow>

SYS_OP_MAP_NONNULL is in the documentation now

$
0
0

Interesting, that SYS_OP_MAP_NONNULL appeared in the Oracle 12c documentation: Choosing Indexes for Materialized Views

Lazy tip: By the way, with length limitations, we can also use documented dump function:

SQL> with
  2    t(a,b) as (
  3               select *
  4               from table(ku$_vcnt(null,'FF','A'))
  5                   ,table(ku$_vcnt(null,'FF','B'))
  6              )
  7  select
  8      a,b
  9     ,case when sys_op_map_nonnull(a) = sys_op_map_nonnull(b) then '=' else '!=' end comp1
 10     ,case when dump(a,1017)          = dump(b,1017)          then '=' else '!=' end comp2
 11     ,sys_op_map_nonnull(a) s_o_m_n_a
 12     ,sys_op_map_nonnull(b) s_o_m_n_b
 13     ,dump(a,  17) dump_a
 14     ,dump(b,  17) dump_b -- it is preferably sometimes to use 1017 - for charset showing
 15  from t;

A     B     COMP1 COMP2 S_O_M_N_A  S_O_M_N_B  DUMP_A                DUMP_B
----- ----- ----- ----- ---------- ---------- --------------------- ---------------------
            =     =     FF         FF         NULL                  NULL
      FF    !=    !=    FF         464600     NULL                  Typ=1 Len=2: F,F
      B     !=    !=    FF         4200       NULL                  Typ=1 Len=1: B
FF          !=    !=    464600     FF         Typ=1 Len=2: F,F      NULL
FF    FF    =     =     464600     464600     Typ=1 Len=2: F,F      Typ=1 Len=2: F,F
FF    B     !=    !=    464600     4200       Typ=1 Len=2: F,F      Typ=1 Len=1: B
A           !=    !=    4100       FF         Typ=1 Len=1: A        NULL
A     FF    !=    !=    4100       464600     Typ=1 Len=1: A        Typ=1 Len=2: F,F
A     B     !=    !=    4100       4200       Typ=1 Len=1: A        Typ=1 Len=1: B

9 rows selected.

Oracle 12c: scalar subqueries

$
0
0

We already know that the CBO transformation engine in 12c can unnest scalar subqueries from select-list.
So it’s not very surprising, that CBO is now able to add scalar subqueries costs to total query cost (even if “_optimizer_unnest_scalar_sq” = false):

Spoiler:: Before 12.1 SelectShow>

Spoiler:: 12.1 SelectShow>

But it’s interesting that correlated subquery can reference now to a column from parent tables more
than one level above:
Spoiler:: Before 12.1 SelectShow>

Spoiler:: 12.1 SelectShow>

Inlist iterator again

$
0
0

Several months ago I wrote about avoiding inlist iterator, but this post about how to force inlist iterator in queries like that:

select *
from xt_test1 t1
    ,xt_test2 t2
where 
     t1.a = :a 
 and t2.id in (a,b)

i.e. when we need to get rows from big table using index by list of values from another table.

Test tables:

Spoiler:: ddl SelectShow>

By default we can get only bad plan with concatenation and 2 full table scans for this query:

Plan hash value: 667870028

---------------------------------------------------------------------------------------------
| Id  | Operation                     | Name        | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT              |             |     2 |    74 |    22   (0)| 00:00:01 |
|   1 |  CONCATENATION                |             |       |       |            |          |
|   2 |   NESTED LOOPS                |             |     1 |    37 |    11   (0)| 00:00:01 |
|   3 |    NESTED LOOPS               |             |     1 |    37 |    11   (0)| 00:00:01 |
|*  4 |     TABLE ACCESS FULL         | XT_TEST1    |     1 |    12 |    10   (0)| 00:00:01 |
|*  5 |     INDEX UNIQUE SCAN         | XT_TEST2_PK |     1 |       |     0   (0)| 00:00:01 |
|   6 |    TABLE ACCESS BY INDEX ROWID| XT_TEST2    |     1 |    25 |     1   (0)| 00:00:01 |
|   7 |   NESTED LOOPS                |             |     1 |    37 |    11   (0)| 00:00:01 |
|   8 |    NESTED LOOPS               |             |     1 |    37 |    11   (0)| 00:00:01 |
|*  9 |     TABLE ACCESS FULL         | XT_TEST1    |     1 |    12 |    10   (0)| 00:00:01 |
|* 10 |     INDEX UNIQUE SCAN         | XT_TEST2_PK |     1 |       |     0   (0)| 00:00:01 |
|  11 |    TABLE ACCESS BY INDEX ROWID| XT_TEST2    |     1 |    25 |     1   (0)| 00:00:01 |
---------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   4 - filter("T1"."A"=TO_NUMBER(:A))
   5 - access("T2"."ID"="B")
   9 - filter("T1"."A"=TO_NUMBER(:A))
  10 - access("T2"."ID"="A")
       filter(LNNVL("T2"."ID"="B"))

27 rows selected.

I have tried several different options and found one interesting thing:

SQL> explain plan for
  2  select *
  3  from xt_test1 t1
  4      ,xt_test2 t2
  5  where
  6       t1.a = :a
  7   and t2.rowid = (select x.rowid rid from xt_test2 x where x.id in (t1.a,t1.b))
  8  /

Explained.

SQL> @xplan

PLAN_TABLE_OUTPUT
-------------------------------------------------------------------------------------------
Plan hash value: 951366071

-------------------------------------------------------------------------------------------
| Id  | Operation                   | Name        | Rows  | Bytes | Cost (%CPU)| Time     |
-------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT            |             |     1 |    37 | 14061   (1)| 00:02:49 |
|   1 |  NESTED LOOPS               |             | 10000 |   361K|    11   (0)| 00:00:01 |
|*  2 |   TABLE ACCESS FULL         | XT_TEST1    |     1 |    12 |    10   (0)| 00:00:01 |
|   3 |   TABLE ACCESS BY USER ROWID| XT_TEST2    | 10000 |   244K|     1   (0)| 00:00:01 |
|   4 |    INLIST ITERATOR          |             |       |       |            |          |
|*  5 |     INDEX UNIQUE SCAN       | XT_TEST2_PK |     2 |    32 |     2   (0)| 00:00:01 |
-------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   2 - filter("T1"."A"=TO_NUMBER(:A))
   5 - access("X"."ID"=:B1 OR "X"."ID"=:B2)

As you can see it’s very good plan, but only for cases when you have one row only for any set of (t1.a, t2.b).
Look what will be if we replace “=” to “in”:
(strictly speaking we have to use “in (select distinct rowid“, but it’s not so important now)

SQL> explain plan for
  2  select *
  3  from xt_test1 t1
  4      ,xt_test2 t2
  5  where
  6       t1.a = :a
  7   and t2.rowid in (select x.rowid rid from xt_test2 x where x.id in (t1.a,t1.b))
  8  /

---------------------------------------------------------------------------------------------
| Id  | Operation                     | Name        | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT              |             |     2 |    74 |    22   (0)| 00:00:01 |
|   1 |  CONCATENATION                |             |       |       |            |          |
|   2 |   NESTED LOOPS                |             |     1 |    37 |    11   (0)| 00:00:01 |
|   3 |    NESTED LOOPS               |             |     1 |    37 |    11   (0)| 00:00:01 |
|*  4 |     TABLE ACCESS FULL         | XT_TEST1    |     1 |    12 |    10   (0)| 00:00:01 |
|*  5 |     INDEX UNIQUE SCAN         | XT_TEST2_PK |     1 |       |     0   (0)| 00:00:01 |
|   6 |    TABLE ACCESS BY INDEX ROWID| XT_TEST2    |     1 |    25 |     1   (0)| 00:00:01 |
|   7 |   NESTED LOOPS                |             |     1 |    37 |    11   (0)| 00:00:01 |
|   8 |    NESTED LOOPS               |             |     1 |    37 |    11   (0)| 00:00:01 |
|*  9 |     TABLE ACCESS FULL         | XT_TEST1    |     1 |    12 |    10   (0)| 00:00:01 |
|* 10 |     INDEX UNIQUE SCAN         | XT_TEST2_PK |     1 |       |     0   (0)| 00:00:01 |
|  11 |    TABLE ACCESS BY INDEX ROWID| XT_TEST2    |     1 |    25 |     1   (0)| 00:00:01 |
---------------------------------------------------------------------------------------------

Query Block Name / Object Alias (identified by operation id):
-------------------------------------------------------------

   1 - SEL$62C663B8
   4 - SEL$62C663B8_1 / T1@SEL$1
   5 - SEL$62C663B8_1 / X@SEL$2
   6 - SEL$62C663B8_1 / X@SEL$2
   9 - SEL$62C663B8_2 / T1@SEL$62C663B8_2
  10 - SEL$62C663B8_2 / X@SEL$62C663B8_2
  11 - SEL$62C663B8_2 / X@SEL$62C663B8_2

Predicate Information (identified by operation id):
---------------------------------------------------

   4 - filter("T1"."A"=TO_NUMBER(:A))
   5 - access("X"."ID"="T1"."B")
   9 - filter("T1"."A"=TO_NUMBER(:A))
  10 - access("X"."ID"="T1"."A")
       filter(LNNVL("X"."ID"="T1"."B"))

Notice that join with “t2″ was eliminated(also we can get join elimination of X).
So let’s try with outlines from plan with “=”

SQL> explain plan for
  2  select
  3    /*+
  4        BEGIN_OUTLINE_DATA
  5        INDEX(@"SEL$2" "X"@"SEL$2" ("XT_TEST2"."ID"))
  6        PUSH_SUBQ(@"SEL$2")
  7        USE_NL(@"SEL$1" "T2"@"SEL$1")
  8        LEADING(@"SEL$1" "T1"@"SEL$1" "T2"@"SEL$1")
  9        ROWID(@"SEL$1" "T2"@"SEL$1")
 10        FULL(@"SEL$1" "T1"@"SEL$1")
 11        OUTLINE_LEAF(@"SEL$1")
 12        OUTLINE_LEAF(@"SEL$2")
 13        ALL_ROWS
 14        DB_VERSION('11.2.0.4')
 15        OPTIMIZER_FEATURES_ENABLE('11.2.0.4')
 16        IGNORE_OPTIM_EMBEDDED_HINTS
 17        END_OUTLINE_DATA
 18    */
 19     *
 20  from xt_test1 t1
 21      ,xt_test2 t2
 22  where
 23       t1.a = :a
 24   and t2.rowid in (select x.rowid rid from xt_test2 x where x.id in (t1.a,t1.b))
 25  /

Explained.

SQL> @xplan +alias

PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------------
Plan hash value: 3405631984

------------------------------------------------------------------------------------
| Id  | Operation            | Name        | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT     |             |   500 | 18500 |    27   (4)| 00:00:01 |
|   1 |  NESTED LOOPS        |             |   500 | 18500 |    24   (0)| 00:00:01 |
|*  2 |   TABLE ACCESS FULL  | XT_TEST1    |     1 |    12 |    10   (0)| 00:00:01 |
|*  3 |   TABLE ACCESS FULL  | XT_TEST2    |   500 | 12500 |    14   (0)| 00:00:01 |
|   4 |    INLIST ITERATOR   |             |       |       |            |          |
|*  5 |     INDEX UNIQUE SCAN| XT_TEST2_PK |     1 |    16 |     2   (0)| 00:00:01 |
------------------------------------------------------------------------------------

Query Block Name / Object Alias (identified by operation id):
-------------------------------------------------------------

   1 - SEL$1
   2 - SEL$1 / T1@SEL$1
   3 - SEL$1 / T2@SEL$1
   4 - SEL$2
   5 - SEL$2 / X@SEL$2

Predicate Information (identified by operation id):
---------------------------------------------------

   2 - filter("T1"."A"=TO_NUMBER(:A))
   3 - filter( EXISTS (SELECT /*+ PUSH_SUBQ INDEX ("X" "XT_TEST2_PK") */ 0
              FROM "XT_TEST2" "X" WHERE ("X"."ID"=:B1 OR "X"."ID"=:B2) AND "X".ROWID=:B3))
   5 - access("X"."ID"=:B1 OR "X"."ID"=:B2)
       filter("X".ROWID=:B1)

Unfortunately “TABLE ACCESS BY USER ROWID” was replaced by “TABLE ACCESS FULL”.
I will try to register SR later about this strange behavior, but I want to show now a couple workarounds for that.
First of all we can use collection iterators:

SQL> explain plan for
  2  select/*+ use_nl(t2) index(t2 (id)) cardinality(x 2)*/ *
  3  from xt_test1 t1
  4      ,table(sys.odcinumberlist(a,b)) x
  5      ,xt_test2 t2
  6  where
  7       t1.a = :a
  8   and t2.id=x.column_value
  9  /

PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------------------
Plan hash value: 651710375

---------------------------------------------------------------------------------------------
| Id  | Operation                                | Name        | Rows  | Bytes | Cost (%CPU)|
---------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                         |             |     2 |    78 |    41   (0)|
|   1 |  NESTED LOOPS                            |             |     2 |    78 |    41   (0)|
|   2 |   NESTED LOOPS                           |             |     2 |    78 |    41   (0)|
|   3 |    NESTED LOOPS                          |             |     2 |    28 |    39   (0)|
|   4 |     TABLE ACCESS FULL                    | XT_TEST1    |     1 |    12 |    10   (0)|
|   5 |     COLLECTION ITERATOR CONSTRUCTOR FETCH|             |     2 |     4 |    29   (0)|
|   6 |    INDEX UNIQUE SCAN                     | XT_TEST2_PK |     1 |       |     0   (0)|
|   7 |   TABLE ACCESS BY INDEX ROWID            | XT_TEST2    |     1 |    25 |     1   (0)|
---------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   4 - filter("T1"."A"=TO_NUMBER(:A))
   6 - access("T2"."ID"=VALUE(KOKBF$))

It’s quite good solution, but there is a big overhead because of many objects creations.
So let’s try another options:

Spoiler:: With generated tables SelectShow>
Note that you have to avoid duplicates if t1.a = t2.b.
Also it’s quite good to get plans with concatenation only on second table, without rereading others tables:
Spoiler:: 12c Lateral with concatenation SelectShow>

But it’s really funny, that do the same with simple ANSI LEFT OUTER join!
Spoiler:: Ansi left join with concatenation SelectShow>

Friday prank: select from join join join

$
0
0

Valid funny queries :)

select the join from join join join using(the,some) 
/
select some join from left join join right using(some,the) 
/
select 1 join from join join join join join using(the) on 1=1
/
select the some from join 
where the=some( the(select some from join) 
               ,the(select the  from join)
               ) 
/ 

Spoiler:: tables SelectShow>
:)

Little addition :)

update two tables set join=2;
select join from two tables;
select first, second, random from two tables join three tables on 1=1;

Another one :)

select first
     , case when the=some(some,some) then join end true
from two tables join three tables using(random);

….
and…

select random columns from two tables join four tables on the=some(some,some);

Single SQL vs SQL+PL/SQL

$
0
0

Everyone knows Tom Kyte’s mantra:

You should do it in a single SQL statement if at all possible.

But we all know that “Every rule has an exception
There are many different cases when pl/sql with sql can be more efficient than only sql, and i dont want to catalog them. I just want to show a couple examples of such exceptions:

1. Running totals by several dimensions

Simple example from forum:

select dt,
       dim1,
       dim2,
       val,
       sum(val) over(partition by dim1 order by dt) dim1_cumulative_sum,
       sum(val) over(partition by dim2 order by dt) dim2_cumulative_sum,
       sum(val) over(partition by dim1, dim2 order by dt) dim1_dim2_cumulative_sum
  from mg_t
 order by dt;

This query will be very hard for big data sets, so we can do it efficiently with pl/sql:

create or replace function xf_to_drop return xt2_to_drop pipelined
is
   type tt  is table of number index by pls_integer;
   type tt2 is table of tt index by pls_integer;
   dim1_c tt;
   dim2_c tt;
   dim12_c tt2;
begin
   for r in (
            select dt,
                   dim1,
                   dim2,
                   val
              from mg_t
             order by dt
   )
   loop
      dim1_c(r.dim1):=case when dim1_c.exists(r.dim1) then dim1_c(r.dim1) else 0 end + r.val;
      dim2_c(r.dim1):=case when dim2_c.exists(r.dim1) then dim2_c(r.dim1) else 0 end + r.val;
      dim12_c(r.dim1)(r.dim2):=case
                                  when dim12_c.exists(r.dim1)
                                   and dim12_c(r.dim1).exists(r.dim2)
                                  then dim12_c(r.dim1)(r.dim2)
                                  else 0
                               end + r.val;
      pipe row (xt1_to_drop( r.dt
                            ,r.dim1
                            ,r.dim2
                            ,r.val
                            ,dim1_c(r.dim1)
                            ,dim1_c(r.dim1)
                            ,dim12_c(r.dim1)(r.dim2)
                           ));
   end loop;
end;
/
Spoiler:: Full example SelectShow>

2. Finding connected components

Assume that we have big table with many-to-many relationship:

create table test (clientid NUMBER(10), accountid NUMBER(10));

How we can find all connected groups?

This example also taken from our russian forum and there was very good and simple sql-only solution, but it’s not efficient on big data sets:

select min(group_member_id) as group_max_id, accountid, clientid
  from  (select clientid as group_member_id
         , connect_by_root accountid as accountid
         , connect_by_root clientid  as clientid
      from test
      connect by nocycle decode(accountid, prior accountid, 1, 0)
                       + decode(clientid,  prior clientid,  1, 0)
                       = 1
  ) a
  group by accountid, clientid
  order by group_max_id, accountid
/

We can try to remember algorithms courses and adopt one of the several algorithms for connected components:

Spoiler:: Based on weighted quick-union algorithm SelectShow>

We can also try even more interesting special algorithms for parallel processing: CONNECTED COMPONENTS ALGORITHMS
FOR MESH-CONNECTED PARALLEL COMPUTERS

When v$sesstat statistics are updated

$
0
0

Craig Shallahamer wrote excellent article “When is v$sesstat really updated?”.
And my today post just a little addition and correction about the difference of updating ‘Db time’ and ‘CPU used by this session’ statistics.

Test #1

In this test I want to show that the statistics will be updated after every fetch call.
I have set arraysize=2, so sql*plus will fetch by 2 rows:
(full script)

-- Result will be fetched by 2 rows:
set arraysize 2;
-- this query generates CPU consumption 
-- in the scalar subquery on fetch phase,
-- so CPU consumption will be separated 
-- into several periods between fetch calls:
with gen as (
            select/*+ materialize */
               level n, lpad(level,400) padding
            from dual
            connect by level<=200
            )
    ,stat as (
            select/*+ inline */
               sid,name,value 
            from v$mystat st, v$statname sn
            where st.statistic#=sn.statistic#
              and sn.name in ('DB time'
                             ,'CPU used by this session'
                             ,'user calls'
                             ,'recursive calls')
            )
--first rows just for avoiding SQL*Plus effect with fetching 1 row at start,
-- others will be fetched by "arraysize" rows:
select null rn,null cnt,null dbtime,null cpu,null user_calls, null recursive_calls from dual
union all -- main query:
select
   rownum rn
  ,(select count(*) from gen g1, gen g2, gen g3 where g1.n>g2.n and g1.n*0=main.n*0) cnt
  ,(select value from stat where sid*0=n*0 and name = 'DB time'                    ) dbtime
  ,(select value from stat where sid*0=n*0 and name = 'CPU used by this session'   ) cpu
  ,(select value from stat where sid*0=n*0 and name = 'user calls'                 ) user_calls
  ,(select value from stat where sid*0=n*0 and name = 'recursive calls'            ) recursive_calls
from gen main
where rownum<=10;
set arraysize 15;

Test results:

SQL> @tests/dbtime

        RN        CNT     DBTIME        CPU USER_CALLS RECURSIVE_CALLS
---------- ---------- ---------- ---------- ---------- ---------------

         1    3980000      12021      11989        200             472
         2    3980000      12021      11989        200             472
         3    3980000      12121      12089        201             472
         4    3980000      12121      12089        201             472
         5    3980000      12220      12186        202             472
         6    3980000      12220      12186        202             472
         7    3980000      12317      12283        203             472
         8    3980000      12317      12283        203             472
         9    3980000      12417      12383        204             472
        10    3980000      12417      12383        204             472

As you can see the statistics are updated after every fetch call.

Test #2

Now since we already tested simple sql query, I want to do a little bit more complicated test with PL/SQL:
I’m going to write single PL/SQL block with next algorithm:
1. Saving stats
2. Executing some pl/sql code with CPU consumption
3. Getting statistics difference
4. Starting query from first test
5. Fetch 10 rows
6. Getting statistics difference
7. Fetch next 10 rows
8. Getting statistics difference
9. Fetch next 10 rows
10. Getting statistics difference
And after executing this block, i want to check statistics.

Full script:

set feed off;

-- saving previous values
column st_dbtime      new_value prev_dbtime      noprint;
column st_cpu_time    new_value prev_cputime     noprint;
column st_user_calls  new_value prev_user_calls  noprint;
column st_recur_calls new_value prev_recur_calls noprint;

select   max(decode(sn.NAME,'DB time'                  ,st.value))*10 st_dbtime
        ,max(decode(sn.NAME,'CPU used by this session' ,st.value))*10 st_cpu_time
        ,max(decode(sn.NAME,'user calls'               ,st.value))    st_user_calls
        ,max(decode(sn.NAME,'recursive calls'          ,st.value))    st_recur_calls
from v$mystat st, v$statname sn
where st.statistic#=sn.statistic# 
  and sn.name in ('DB time','CPU used by this session'
                 ,'user calls','recursive calls'
                 )
/
-- variable for output from pl/sql block: 
var output varchar2(4000);

prompt Executing test...;
----- main test:
declare
   cnt int;
   st_dbtime      number; 
   st_cpu_time    number; 
   st_user_calls  number; 
   st_recur_calls number; 
   cursor c is 
      with gen as (select/*+ materialize */
                     level n, lpad(level,400) padding
                   from dual
                   connect by level<=200)
      select
          rownum rn
        , (select count(*) from gen g1, gen g2, gen g3 where g1.n>g2.n and g1.n*0=main.n*0) cnt
      from gen main
      where rownum<=60;
   
   type ctype is table of c%rowtype;
   c_array ctype;
   
   procedure SnapStats(descr varchar2:=null)
   is
      st_new_dbtime      number;
      st_new_cpu_time    number;
      st_new_user_calls  number;
      st_new_recur_calls number;
   begin
      select   max(decode(sn.NAME,'DB time'                 ,st.value))*10 st_dbtime
              ,max(decode(sn.NAME,'CPU used by this session',st.value))*10 st_cpu_time
              ,max(decode(sn.NAME,'user calls'              ,st.value))    st_user_calls
              ,max(decode(sn.NAME,'recursive calls'         ,st.value))    st_recur_calls
          into st_new_dbtime,st_new_cpu_time,st_new_user_calls,st_new_recur_calls
      from v$mystat st, v$statname sn
      where st.statistic#=sn.statistic#
        and sn.name in ('DB time','CPU used by this session'
                       ,'user calls','recursive calls'
                       );
      if descr is not null then
         :output:= :output || descr ||':'||chr(10)
                || 'sesstat dbtime:     ' || (st_new_dbtime      - st_dbtime      )||chr(10)
                || 'sesstat cputime:    ' || (st_new_cpu_time    - st_cpu_time    )||chr(10)
                || 'sesstat user calls: ' || (st_new_user_calls  - st_user_calls  )||chr(10)
                || 'sesstat recur calls:' || (st_new_recur_calls - st_recur_calls )||chr(10)
                || '======================================'||chr(10);
      end if;
      st_dbtime      := st_new_dbtime     ;
      st_cpu_time    := st_new_cpu_time   ;
      st_user_calls  := st_new_user_calls ;
      st_recur_calls := st_new_recur_calls;
   end;
   
begin
   -- saving previous stats:
   SnapStats;

   -- generating cpu load:
   for i in 1..1e7 loop
      cnt:=cnt**2+cnt**1.3-cnt**1.2;
   end loop;
   -- getting new stats:
   SnapStats('After pl/sql loop');
   
   open c;
   SnapStats('After "open c"');
   fetch c bulk collect into c_array limit 10;
   SnapStats('After fetch 10 rows');
   fetch c bulk collect into c_array limit 10;
   SnapStats('After fetch 20 rows');
   fetch c bulk collect into c_array limit 10;
   SnapStats('After fetch 30 rows');
   close c;
   SnapStats('After close c');
end;
/ 

prompt 'Delta stats after statement(ms):';
select   max(decode(sn.NAME,'DB time'                 ,st.value))*10
          - &&prev_dbtime      as delta_dbtime
        ,max(decode(sn.NAME,'CPU used by this session',st.value))*10
          - &&prev_cputime     as delta_cpu_time
        ,max(decode(sn.NAME,'user calls'              ,st.value))  
          - &&prev_user_calls  as delta_user_calls
        ,max(decode(sn.NAME,'recursive calls'         ,st.value))  
          - &&prev_recur_calls as delta_recur_calls
from v$mystat st, v$statname sn
where st.statistic#=sn.statistic# 
  and sn.name in ('DB time','CPU used by this session'
                 ,'user calls','recursive calls'
                 )
/
prompt 'Test results:';
col output format a40;
print output;
set feed off;

Output:

SQL> @tests/dbtime2

Executing test...
'Delta stats after statement(ms):'

DELTA_DBTIME DELTA_CPU_TIME DELTA_USER_CALLS DELTA_RECUR_CALLS
------------ -------------- ---------------- -----------------
       18530          18460                5                33

Test results:
OUTPUT
----------------------------------------
After pl/sql loop:
sesstat dbtime:     0
sesstat cputime:    4350
sesstat user calls: 0
sesstat recur calls:2
======================================
After "open c":
sesstat dbtime:     0
sesstat cputime:    20
sesstat user calls: 0
sesstat recur calls:4
======================================
After fetch 10 rows:
sesstat dbtime:     0
sesstat cputime:    4680
sesstat user calls: 0
sesstat recur calls:2
======================================
After fetch 20 rows:
sesstat dbtime:     0
sesstat cputime:    4680
sesstat user calls: 0
sesstat recur calls:2
======================================
After fetch 30 rows:
sesstat dbtime:     0
sesstat cputime:    4690
sesstat user calls: 0
sesstat recur calls:2
======================================
After close c:
sesstat dbtime:     0
sesstat cputime:    0
sesstat user calls: 0
sesstat recur calls:3
======================================

We can notice that “CPU time” is updated at the same time as recursive calls, but “DB time” is updated only with “User calls”. Although this difference is not so important(because in most cases we can use other statistics in sum), but i think, if you want to instrument some code, it gives reason to check out desirable statistics for update time.

Deterministic functions, result_cache and operators

$
0
0

In previous posts about caching mechanism of determinstic functions I wrote that cached results are kept only between fetch calls, but there is one exception from this rule: if all function parameters are literals, cached result will not be flushed every fetch call.
Little example with difference:

SQL> create or replace function f_deterministic(p varchar2)
  2     return varchar2
  3     deterministic
  4  as
  5  begin
  6     dbms_output.put_line(p);
  7     return p;
  8  end;
  9  /
SQL> set arrays 2 feed on;
SQL> set serverout on;
SQL> select
  2     f_deterministic(x) a
  3    ,f_deterministic('literal') b
  4  from (select 'not literal' x
  5        from dual
  6        connect by level<=10
  7       );

A                              B
------------------------------ ------------------------------
not literal                    literal
not literal                    literal
not literal                    literal
not literal                    literal
not literal                    literal
not literal                    literal
not literal                    literal
not literal                    literal
not literal                    literal
not literal                    literal

10 rows selected.

not literal
literal
not literal
not literal
not literal
not literal
not literal

As you can see, ‘literal’ was printed once, but ‘not literal’ was printed 6 times, so it was returned from cache 4 times.

Also i want to show the differences in consistency between:
1. Calling a function with determinstic and result_cache;
2. Calling an operator for function with result_cache;
3. Calling an operator for function with deterministic and result_cache;

In this example I will do updates in autonomouse transactions to emulate updates in another session during query execution:

Spoiler:: Tables and procedures with updates SelectShow>

Spoiler:: Variant 1 SelectShow>

Spoiler:: Variant 2 SelectShow>

Spoiler:: Variant 3 SelectShow>

Test:
SQL> set arrays 2;
SQL> select
  2     f1(dummy) variant1
  3    ,o2(dummy) variant2
  4    ,o3(dummy) variant3
  5  from dual
  6  connect by level<=10;

  VARIANT1   VARIANT2   VARIANT3
---------- ---------- ----------
         1          1          1
         2          1          1
         2          1          1
         3          1          1
         3          1          1
         4          1          1
         4          1          1
         5          1          1
         5          1          1
         6          1          1

10 rows selected.

SQL> /

  VARIANT1   VARIANT2   VARIANT3
---------- ---------- ----------
         7         11         11
         8         11         11
         8         11         11
         9         11         11
         9         11         11
        10         11         11
        10         11         11
        11         11         11
        11         11         11
        12         11         11

10 rows selected.

We can see that function F1 returns same results every 2 execution – it is equal to fetch size(“set arraysize 2″),
operator O2 and O3 return same results for all rows in first query execution, but in the second query executions we can see that they are incremented by 10 – it’s equal to number of rows.
What we can learn from that:
1. A calling a function F1 with result_cache and deterministic reduces function executions, but all function results inconsistent with query;
2. Operator O2 returns consistent results, but function is always executed because we invalidating result_cache every execution;
3. Operator O3 works as well as operator O2, without considering that function is deterministic.

All tests scripts: tests.zip

To_char, Infinity and NaN

$
0
0

Funny that oracle can easily cast ‘nan’,'inf’,'infinity’,'-inf’,'-infinity’ to corresponding binary_float_infinity,binary_double_nan, but there is no any format models for to_char(binary_float_infinity,format) or to_binary_***(text_expr,format) that can output the same as to_char(binary_float_infinity)/to_binary_float(‘inf’) without format parameter:

If a BINARY_FLOAT or BINARY_DOUBLE value is converted to CHAR or NCHAR, and the input is either infinity or NaN (not a number), then Oracle always returns the pound signs to replace the value.

Little example:

SQL> select to_binary_float('inf') from dual;

TO_BINARY_FLOAT('INF')
----------------------
                   Inf

SQL> select to_binary_float('inf','9999') from dual;
select to_binary_float('inf','9999') from dual
                       *
ERROR at line 1:
ORA-01722: invalid number

SQL> select
  2     to_char(binary_float_infinity)         without_format
  3    ,to_char(binary_float_infinity,'99999') with_format
  4    ,to_char(1e6d,'99999')                  too_large
  5  from dual;

WITHOUT_F WITH_FORMAT        TOO_LARGE
--------- ------------------ ------------------
Inf       ######             ######

SQL> select to_char(0/0f) without_format, to_char(0/0f,'tme') with_format from dual;

WITHOUT_F WITH_FORMAT
--------- --------------------------------------------------------------------------
Nan       ################################################################

ps. it’s just crossposting of my old blog.

Strange moving filter predicates from index to table

$
0
0

It seems strange to me:
When all needed columns are in the index, filter predicates are expectedly applied to the index

select a,b from xt_test where a=1 and
(:b is null or b = :b)

-----------------------------------------------------------------------------------------
| Id  | Operation        | Name       | Starts | E-Rows | A-Rows |   A-Time   | Buffers |
-----------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT |            |      1 |        |      1 |00:00:00.01 |       2 |
|*  1 |  INDEX RANGE SCAN| PK_XT_TEST |      1 |      1 |      1 |00:00:00.01 |       2 |
-----------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - access("A"=1)
       filter((:B IS NULL OR "B"=:B))

But if I add another column “PAD”, the filter moves to the table filters:

select a,b,pad from xt_test where a=1
and (:b is null or b = :b)

---------------------------------------------------------------------------------------
| Id  | Operation                   | Name       | Starts | E-Rows | A-Rows | Buffers |
---------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT            |            |      1 |        |      1 |       4 |
|*  1 |  TABLE ACCESS BY INDEX ROWID| XT_TEST    |      1 |      1 |      1 |       4 |
|*  2 |   INDEX RANGE SCAN          | PK_XT_TEST |      1 |     10 |     10 |       2 |
---------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - filter((:B IS NULL OR "B"=:B))
   2 - access("A"=1)

As workaround we can use something like that:

select--+ NO_ELIMINATE_JOIN(t) NO_ELIMINATE_JOIN(t2@sel$2) gather_plan_statistics
   a,b,pad
from xt_test t
where t.rowid in ( select t2.rowid
                   from xt_test t2
                   where a=1
                     and (:b is null or b = :b)
                 );

Plan hash value: 1464320522

--------------------------------------------------------------------------------------
| Id  | Operation                   | Name       | Starts | E-Rows | A-Rows |Buffers |
--------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT            |            |      1 |        |      1 |      3 |
|   1 |  NESTED LOOPS               |            |      1 |      1 |      1 |      3 |
|*  2 |   INDEX RANGE SCAN          | PK_XT_TEST |      1 |      1 |      1 |      2 |
|   3 |   TABLE ACCESS BY USER ROWID| XT_TEST    |      1 |      1 |      1 |      1 |
--------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   2 - access("A"=1)
       filter((:B IS NULL OR "B"=:B))

Spoiler:: Full test case SelectShow>

Update:
I just forgot to mention that there is another workaround – to force concatenation:
SQL> select--+ use_concat(or_predicates(2))
  2     a,b,pad
  3  from xt_test where a=1 and (:b is null or b = :b);

         A          B PAD
---------- ---------- ----------------------------------------
         1          1 1

Plan hash value: 3582916188

----------------------------------------------------------------------------------------------------------------------------
| Id  | Operation                     | Name       | Starts | E-Rows | Cost (%CPU)| A-Rows |   A-Time   | Buffers | Reads  |
----------------------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT              |            |      1 |        |     3 (100)|      1 |00:00:00.01 |       2 |      2 |
|   1 |  CONCATENATION                |            |      1 |        |            |      1 |00:00:00.01 |       2 |      2 |
|   2 |   TABLE ACCESS BY INDEX ROWID | XT_TEST    |      1 |      1 |     1   (0)|      1 |00:00:00.01 |       2 |      2 |
|*  3 |    INDEX UNIQUE SCAN          | PK_XT_TEST |      1 |      1 |     0   (0)|      1 |00:00:00.01 |       1 |      1 |
|*  4 |   FILTER                      |            |      1 |        |            |      0 |00:00:00.01 |       0 |      0 |
|   5 |    TABLE ACCESS BY INDEX ROWID| XT_TEST    |      0 |     10 |     2   (0)|      0 |00:00:00.01 |       0 |      0 |
|*  6 |     INDEX RANGE SCAN          | PK_XT_TEST |      0 |     10 |     1   (0)|      0 |00:00:00.01 |       0 |      0 |
----------------------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   3 - access("A"=1 AND "B"=:B)
   4 - filter(:B IS NULL)
   6 - access("A"=1)
       filter(LNNVL("B"=:B))

REGEXP_LIKE: strange unspecified value in parameter “modifier”

$
0
0

Today I noticed strange thing in predicate section of execution plan for simple query with regexp_like, where 3rd parameter “MODIFIER” was not specified:

SQL> select * from dual where regexp_like(dummy,'.');

D
-
X

SQL> select * from table(dbms_xplan.display_cursor);

PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------
SQL_ID  97xuqf9cmjsta, child number 0
-------------------------------------
select * from dual where regexp_like(dummy,'.')

Plan hash value: 272002086

--------------------------------------------------------------------------
| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |      |       |       |     2 (100)|          |
|*  1 |  TABLE ACCESS FULL| DUAL |     1 |     2 |     2   (0)| 00:00:01 |
--------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - filter( REGEXP_LIKE ("DUMMY",'.',HEXTORAW('F07FD85CFF0700006A1116
              45010000000000000000000000FC12164501000000000000000000000000000000000000
              0010000000000000001880D85CFF07000002000000000000000000000081000000') ))


20 rows selected.

It is particularly interesting that the values in HEXTORAW() are always different for different first parameters:

SQL> select * from dual where regexp_like(dummy,'x');
...
   1 - filter( REGEXP_LIKE ("DUMMY",'x',HEXTORAW('3895D330FF0700006A1116
              45010000000000000000000000FC12164501000000000000000000000000000000000000
              0011000000000000006895D330FF07000002000000000000000000000081000000') ))
SQL> select * from dual where regexp_like(dummy,'y');
...
   1 - filter( REGEXP_LIKE ("DUMMY",'y',HEXTORAW('00DA3C3FFF0700006A1116
              45010000000000000000000000FC12164501000000000000000000000000000000000000
              00110000000000000030DA3C3FFF07000002000000000000000000000081000000') ))
SQL> select * from dual where regexp_like(dummy||'','x')
...
   1 - filter( REGEXP_LIKE ("DUMMY"||'','x',HEXTORAW('70964F2FFF0700006A
              111645010000000000000000000000FC1216450100000000000000000000000000000000
              0000001100000000000000A0964F2FFF07000002000000000000000000000081000000')
               ))

I don’t know, what does it mean, but it looks like garbage from memory.
When I noticed this, I decided to check how regexp_like will work in function-based indexes:

SQL> create table xtest as
  2    select dummy||level as str
  3    from dual
  4    connect by level<=30;

Table created.

SQL> select * from xtest where case when regexp_like(str,'1') then 1 end = 1;
...
12 rows selected.

SQL> select * from table(dbms_xplan.display_cursor);

PLAN_TABLE_OUTPUT
-----------------------------------------------------------------------------------------
SQL_ID  7ztp0k8c1zn2h, child number 0
-------------------------------------
select * from xtest where case when regexp_like(str,'1') then 1 end = 1

Plan hash value: 4207139086

---------------------------------------------------------------------------
| Id  | Operation         | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |       |       |       |     3 (100)|          |
|*  1 |  TABLE ACCESS FULL| XTEST |    12 |   264 |     3   (0)| 00:00:01 |
---------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - filter(CASE  WHEN  REGEXP_LIKE
              ("STR",'1',HEXTORAW('68F9CB32FF0700006A111645010000000000000000000000FC1
              216450100000000000000000000000000000000000000110000000000000098F9CB32FF0
              7000002000000000000000000000081000000') ) THEN 1 END =1)

SQL> create index xtest_fbi on xtest(case when regexp_like(str,'1') then 1 end);

Index created.

SQL> select * from xtest where case when regexp_like(str,'1') then 1 end = 1;
...
12 rows selected.

SQL> select * from table(dbms_xplan.display_cursor);

PLAN_TABLE_OUTPUT
-----------------------------------------------------------------------------------------
SQL_ID  7ztp0k8c1zn2h, child number 0
-------------------------------------
select * from xtest where case when regexp_like(str,'1') then 1 end = 1

Plan hash value: 1479471124

-----------------------------------------------------------------------------------------
| Id  | Operation                   | Name      | Rows  | Bytes | Cost (%CPU)| Time     |
-----------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT            |           |       |       |     2 (100)|          |
|   1 |  TABLE ACCESS BY INDEX ROWID| XTEST     |    12 |   300 |     2   (0)| 00:00:01 |
|*  2 |   INDEX RANGE SCAN          | XTEST_FBI |    12 |       |     1   (0)| 00:00:01 |
-----------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   2 - access("XTEST"."SYS_NC00002$"=1)

SQL> select column_expression from user_ind_expressions e where e.index_name='XTEST_FBI';

COLUMN_EXPRESSION
-----------------------------------------------------------------------------------------
CASE  WHEN  REGEXP_LIKE ("STR",'1') THEN 1 END

As you can see it works fine, although the predicate from first execution plan differs from the FBI expression.
Then I dumped 10053 trace and noticed that the HEXTORAW(…) function appeared in “Explain Plan Dump” only, so it looks just like plan output bug.

Bug with xmltable, xmlnamespaces and xquery_string specified using bind variable

$
0
0

Today I was asked about strange problem: xmltable does not return data, if xquery specified by bind variable and xml data has xmlnamespaces:

SQL> var x_path varchar2(100);
SQL> var x_xml  varchar2(4000);
SQL> col x format a100;
SQL> begin
  2      :x_path:='/table/tr/td';
  3      :x_xml :=q'[
  4                  <table xmlns="http://www.w3.org/tr/html4/">
  5                    <tr>
  6                      <td>apples</td>
  7                      <td>bananas</td>
  8                    </tr>
  9                  </table>
 10                  ]';
 11  end;
 12  /

PL/SQL procedure successfully completed.

SQL> select
  2        i, x
  3   from xmltable( xmlnamespaces(default 'http://www.w3.org/tr/html4/'),
  4                  :x_path -- bind variable
  5                  --'/table/tr/td' -- same value as in the variable "X_PATH"
  6                  passing xmltype(:x_xml)
  7                  columns i    for ordinality,
  8                          x    xmltype path '.'
  9                );

no rows selected

But if we comment bind variable and comment out literal x_query ‘/table/tr/td’, query will return data:

SQL> select
  2        i, x
  3   from xmltable( xmlnamespaces(default 'http://www.w3.org/tr/html4/'),
  4                  --:x_path -- bind variable
  5                  '/table/tr/td' -- same value as in the variable "X_PATH"
  6                  passing xmltype(:x_xml)
  7                  columns i    for ordinality,
  8                          x    xmltype path '.'
  9                );

         I X
---------- -------------------------------------------------------------------
         1 <td xmlns="http://www.w3.org/tr/html4/">apples</td>
         2 <td xmlns="http://www.w3.org/tr/html4/">bananas</td>

2 rows selected.

The only workaround I found is the specifying any namespace in the x_query – ‘/*:table/*:tr/*:td’

SQL> exec :x_path:='/*:table/*:tr/*:td'

PL/SQL procedure successfully completed.

SQL> select
  2        i, x
  3   from xmltable( xmlnamespaces(default 'http://www.w3.org/tr/html4/'),
  4                  :x_path -- bind variable
  5                  passing xmltype(:x_xml)
  6                  columns i    for ordinality,
  7                          x    xmltype path '.'
  8                );

         I X
---------- -------------------------------------------------------------------
         1 <td xmlns="http://www.w3.org/tr/html4/">apples</td>
         2 <td xmlns="http://www.w3.org/tr/html4/">bananas</td>

2 rows selected.

It’s quite ugly solution, but I’m not sure whether there is another solution…

Standalone sqlplus script for plans comparing

$
0
0

I have a couple scripts for plans comparing:

1. https://github.com/xtender/xt_scripts/blob/master/diff_plans.sql
2. http://github.com/xtender/xt_scripts/blob/master/plans/diff_plans_active.sql

But they have dependencies on other scripts, so I decided to create a standalone script for more convenient use without the need to download other scripts and to set up the sql*plus environment.
I’ve tested it already with firefox, so you can try it now: http://github.com/xtender/xt_scripts/blob/master/plans/diff_plans_active_standalone.sql

Some screenshots:
diff_plans.sql:
diff_plans

plans_active.sql:
plans_active

Usage:
1. plans_active:

SQL> @plans_active 0ws7ahf1d78qa 

2. diff_plans:

SQL> @diff_plans 0ws7ahf1d78qa 
 *** Diff plans by sql_id. Version with package XT_PLANS. 
Usage: @plans/diff_plans2 sqlid [+awr] [-v$sql] 

P_AWR           P_VSQL 
--------------- --------------- 
false           true 

Strictly speaking, we can do it sometimes easier: it’s quite simple to compare plans without first column “ID”, so we can simply compare “select .. from v$sql_plan/v$sql_plan_statistics_all/v$sql_plan_monitor” output with any comparing tool.

How to find out session info about session that comes from remote database through dblink

$
0
0

It is well known thing and you can even find it on MOS, but I have a little more simple script for it, so I want to show little example.

First of all we need to start script on local database:

SQL>                                                                                                                                                                   
SQL> @transactions/global.sql
Enter filters(empty for any)...
Sid           :
Globalid mask :
Remote_db mask:

 INST_ID  SID    SERIAL# USERNAME REMOTE_DB REMOTE_DBID TRANS_ID         DIRECTION   GLOBALID                                           EVENT                      
-------- ---- ---------- -------- --------- ----------- ---------------- ----------- -------------------------------------------------- ---------------------------
       1  275       4469 XTENDER  BAIKAL     1742630060 8.20.7119        FROM REMOTE 4241494B414C2E63616336656437362E382E32302E37313139 SQL*Net message from client
                                                                                                                                                                  

Then we need to copy GLOBALID of interested session and run script on database that shown in column REMOTE_DBID, but with specifieng GLOBALID:

SQL>                                                                                                                                                                                                 
SQL> conn sys/syspass@baikal as sysdba
Connected.

======================================================================
=======  Connected to  SYS@BAIKAL(baikal)(BAIKAL)
=======  SID           203
=======  SERIAL#       38399
=======  SPID          6536
=======  DB_VERSION    11.2.0.4.0
======================================================================

SQL> @transactions/global.sql
Enter filters(empty for any)...
Sid           :
Globalid mask : 4241494B414C2E63616336656437362E382E32302E37313139
Remote_db mask:

INST_ID   SID    SERIAL# USERNAME  REMOTE_DB  REMOTE_DBID TRANS_ID   DIRECTION   GLOBALID                                            STATE                     
------- ----- ---------- --------- ---------- ----------- ---------- ----------- --------------------------------------------------  --------------------------
      1     9      39637 XTENDER   BAIKAL      1742630060 8.20.7119  TO REMOTE   4241494B414C2E63616336656437362E382E32302E37313139  [ORACLE COORDINATED]ACTIVE

It’s quite simple and fast.

PRECOMPUTE_SUBQUERY hint

$
0
0

I’ve just found out that we can specify query block for PRECOMPUTE_SUBQUERY: /*+ precompute_subquery(@sel$2) */
So we can use it now with SQL profiles, SPM baselines and patches.

SQL> select/*+ precompute_subquery(@sel$2) */ * from dual where dummy in (select chr(level) from dual connect by level<=100);

D
-
X

SQL> @last

PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
SQL_ID  c437vsqj7c4jy, child number 0
-------------------------------------
select/*+ precompute_subquery(@sel$2) */ * from dual where dummy in
(select chr(level) from dual connect by level<=100)

Plan hash value: 272002086

---------------------------------------------------------------------------
| Id  | Operation         | Name | E-Rows |E-Bytes| Cost (%CPU)| E-Time   |
---------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |      |        |       |     2 (100)|          |
|*  1 |  TABLE ACCESS FULL| DUAL |      1 |     2 |     2   (0)| 00:00:01 |
---------------------------------------------------------------------------

Query Block Name / Object Alias (identified by operation id):
-------------------------------------------------------------

   1 - SEL$1 / DUAL@SEL$1

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - filter(("DUMMY"='' OR "DUMMY"='' OR "DUMMY"='♥' OR "DUMMY"='♦'
              OR "DUMMY"='♣' OR "DUMMY"='♠' OR "DUMMY"='' OR "DUMMY"=' OR
              "DUMMY"=' ' OR "DUMMY"=' ' OR "DUMMY"='' OR "DUMMY"='' OR "DUMMY"=' '
              OR "DUMMY"='' OR "DUMMY"='' OR "DUMMY"='►' OR "DUMMY"='◄' OR
              "DUMMY"='' OR "DUMMY"='' OR "DUMMY"='' OR "DUMMY"='' OR "DUMMY"=''
              OR "DUMMY"='' OR "DUMMY"='↑' OR "DUMMY"='↓' OR "DUMMY"='' OR
              "DUMMY"=' OR "DUMMY"='' OR "DUMMY"='' OR "DUMMY"='' OR "DUMMY"=''
              OR "DUMMY"=' ' OR "DUMMY"='!' OR "DUMMY"='"' OR "DUMMY"='#' OR
              "DUMMY"='$' OR "DUMMY"='%' OR "DUMMY"='&' OR "DUMMY"='''' OR
              "DUMMY"='(' OR "DUMMY"=')' OR "DUMMY"='*' OR "DUMMY"='+' OR "DUMMY"=','
              OR "DUMMY"='-' OR "DUMMY"='.' OR "DUMMY"='/' OR "DUMMY"='0' OR
              "DUMMY"='1' OR "DUMMY"='2' OR "DUMMY"='3' OR "DUMMY"='4' OR "DUMMY"='5'
              OR "DUMMY"='6' OR "DUMMY"='7' OR "DUMMY"='8' OR "DUMMY"='9' OR
              "DUMMY"=':' OR "DUMMY"=';' OR "DUMMY"='<' OR "DUMMY"='=' OR "DUMMY"='>'
              OR "DUMMY"='?' OR "DUMMY"='@' OR "DUMMY"='A' OR "DUMMY"='B' OR
              "DUMMY"='C' OR "DUMMY"='D' OR "DUMMY"='E' OR "DUMMY"='F' OR "DUMMY"='G'
              OR "DUMMY"='H' OR "DUMMY"='I' OR "DUMMY"='J' OR "DUMMY"='K' OR
              "DUMMY"='L' OR "DUMMY"='M' OR "DUMMY"='N' OR "DUMMY"='O' OR "DUMMY"='P'
              OR "DUMMY"='Q' OR "DUMMY"='R' OR "DUMMY"='S' OR "DUMMY"='T' OR
              "DUMMY"='U' OR "DUMMY"='V' OR "DUMMY"='W' OR "DUMMY"='X' OR "DUMMY"='Y'
              OR "DUMMY"='Z' OR "DUMMY"='[' OR "DUMMY"='\' OR "DUMMY"=']' OR
              "DUMMY"='^' OR "DUMMY"='_' OR "DUMMY"='`' OR "DUMMY"='a' OR "DUMMY"='b'
              OR "DUMMY"='c' OR "DUMMY"='d'))

PS. I’m not sure, but as far as i remember, when I tested it on 10.2, it didn’t work with specifying a query block.
And I have never seen such usage.

Viewing all 101 articles
Browse latest View live